#### Back to the basics, Part2 Data exploration: representing and testing data properties

#### **Spyros Veronikis**

Electrical and Electronics Engineer Dept. of Archives and Library Sciences Ionian University

spver@ionio.gr

http://dlib.ionio.gr/~spver/seminars/statistics/





More information

# **Seminar Content**

- Basic statistics concepts
- Data exploration
- Correlation
- Comparing two means
- Comparing several means (ANOVA)
- Non-parametric test
- Nominal data



# **Today's Content**

- Statistical significance
- Parametric Data
- Histograms and Boxplots
- Descriptive statistics
- Correcting problems in the data
- Exploring groups of data
- Testing whether a distribution is normal
- Testing for homogeneity of variance
- Summary

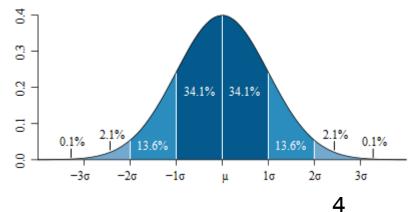


# **Statistical significance**



#### Ronald Fisher and Muriel Bristol, The Lady tasting

#### tea


Given 6 cups of tea and milk (in 3 of which the tea was placed first and 3 had the milk added first)

"What is the probability that lady Bristol finds all 3 cups where tea was placed first?" (Answer: 1/20= 0.05 ή 5%)

Fisher suggested that only when we are at least 95% certain that a result is genuine (not a chance finding) should we accept it as true, and therefore statistically significant.

Frequency distributions can be used to assess the probability. In a typical normal distribution, chance of z occuring more than:

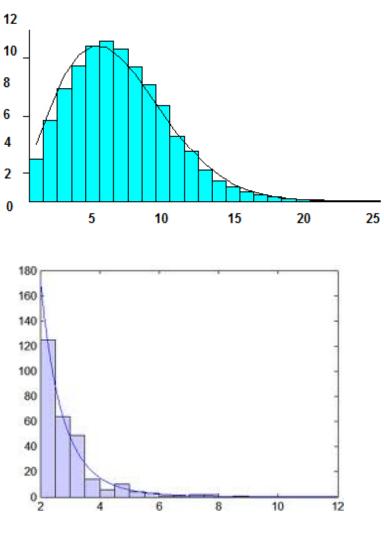
- Z= 1.96 is 0.05 or 5%
- Z= 2.58 is 0.01 or 1%
- Z= 3.29 is 0.001 or 0,1%





#### Parametric data

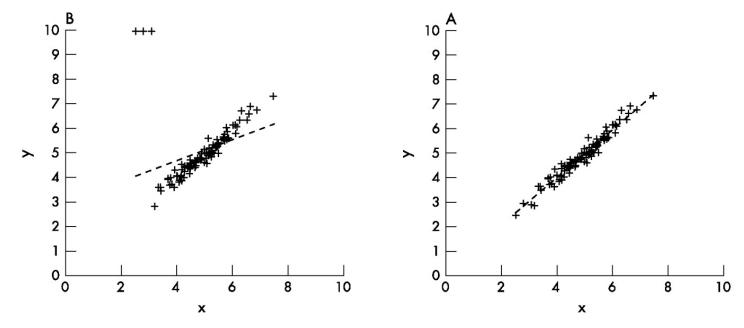
- Assumptions of parametric tests:
  - 1. Normally distributed data:
    - Checked with histograms and Kolmogorov-Smirnov or Shapiro-Wilk criterion
  - 2. Homogeneity of variance
    - In several groups: data in samples come from populations of same variance
    - In correlational designs: variance of one variable remains stable across all levels of other variable(s)
  - 3. Interval data
    - Arithmetic values, equal differences among successive points in measurement scale
  - 4. Independence
    - Data come from different participants who don't influence each other.


#### Only requirements 1 and 2 are tested by objective criteria (tests). Requirements 3 and 4 are tested by common sense.



# **Graphing and screening data**

#### Histograms


- Show the number of times each recorded value occurs
- The horizontal axis represents the levels of measurement of the variable
- They make outliers easy to spot

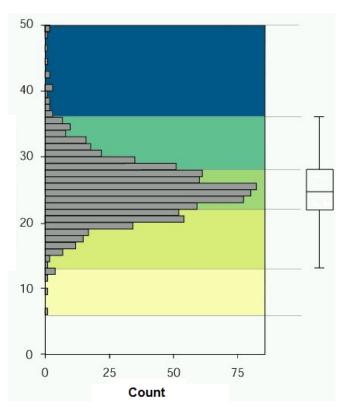




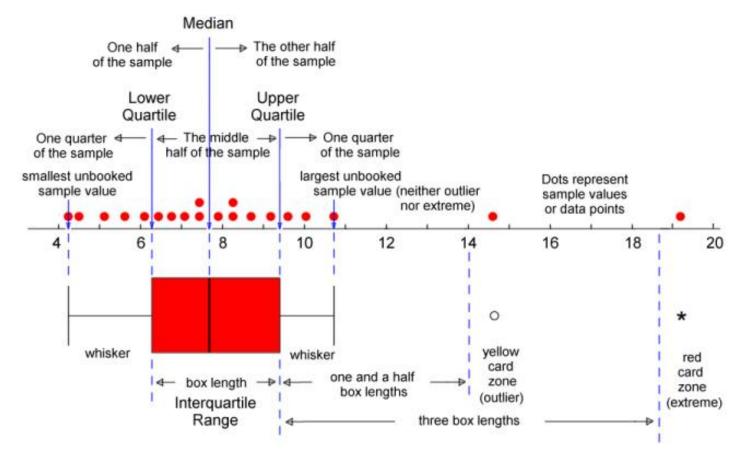
## **Outliers**

- These are scores very different from the rest of the data
- They occur rarely
- They can bias the model we fit to the data
- They need to be identified and omitted from the dataset






# **Graphing and screening data**


- Boxplots (box-whisker diagrams)
  - Show the lowest and highest scores
  - Show the quartile (25%) ranges
  - Show the interquartile range (50%)
  - Show the *median*\*
- Normal distribution has a symmetrical boxplot
- Skewed distributions don't
- Platykurtic distributions have wide boxplots

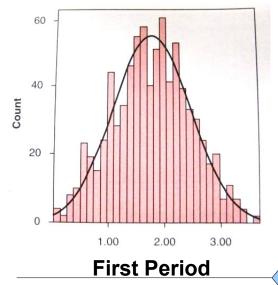
\* The median of a list of numbers is the number that splits the dataset in half. E.g. for dataset A={1,2,2,4,13,15,51} the median is 4 (the average is 12.57)

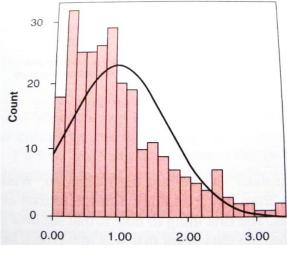




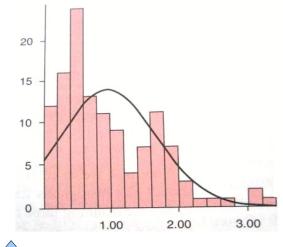
## **Graphing and screening data**







# **Descriptive statistics**

- "An alternative search tool was provided to the library patrons and we assess its adoption by recording the number of hours spent on the previous tool before and after 2 demonstration sessions".
- Descriptive statistics
  - Mean, Standard error of mean
  - Median
  - Mode
  - Standard deviation
  - Variance
  - Skewness and std. Error
  - Kurtosis and std. Error
  - Range
  - Min, Max




#### **Descriptive statistics**





#### Second Period



Third Period

|                        |         | First period | Second period | Third period |  |
|------------------------|---------|--------------|---------------|--------------|--|
| N                      | Valid   | 810          | 264           | 123          |  |
|                        | Missing | 0            | 546           | 687          |  |
| Mean                   |         | 1,77         | 0,96          | 0,97         |  |
| Std error of Mean      |         | 0,0244       | 0,0444        | 0,0640       |  |
| Median                 |         | 1,79         | 0,79          | 0,76         |  |
| Mode                   |         | 2,00         | 0,23          | 0,44         |  |
| Std. Deviation         |         | 0,6935       | 0,7208        | 0,7103       |  |
| Variance               |         | 0,481        | 0,519         | 0,504        |  |
| Skewness               |         | -0,004       | 1,095         | 1,033        |  |
| Std. Error of skewness |         | 0,086        | 0,150         | 0,218        |  |
| Kurtosis               |         | -0,410       | 0,822         | 0,732        |  |
| Std. Error of kurtosis |         | 0,172        | 0,299         | 0,433        |  |
| Range                  |         | 3,67         | 3,44          | 3,39         |  |
| Minimum                |         | 0,02         | 0,00          | 0,02         |  |
| Maximum                |         | 3,69         | 3,44          | 3,41         |  |



# **Skewness and kurtosis**

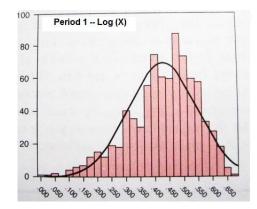
- These are 0 for normal distribution
- z-values are more informative because they are standardized

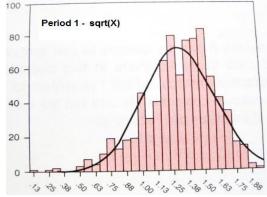
| – Skewness:                                           | z <sub>sk</sub> = SK/SE <sub>sk</sub>    |                          |
|-------------------------------------------------------|------------------------------------------|--------------------------|
| – Kurtosis:                                           | z <sub>kur</sub> = KUR/SE <sub>kur</sub> |                          |
| <b>1<sup>st</sup> period:</b> z <sub>sk</sub> =004    | /.086= .047,                             | z <sub>kur</sub> = -2.38 |
| <b>2<sup>nd</sup> period:</b> z <sub>sk</sub> = 1.09  | 5/.150= 7.30,                            | z <sub>kur</sub> = -2.75 |
| <b>3<sup>rd</sup> period:</b> z <sub>sk</sub> = 1.033 | 3/.218= 4.73,                            | z <sub>kur</sub> = 1.69  |

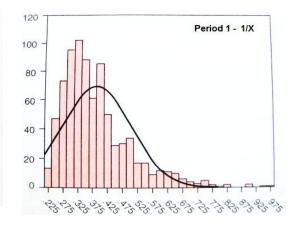


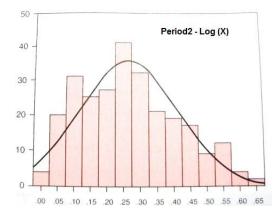
## **Correcting problems in data**

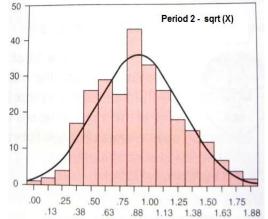
- How do we deal with problems in data (problems in distribution, outliers, missing values)
  - Remove problematic cases
  - Transform the data ( $X \rightarrow Y = function(X)$ )
- Transformations can correct distribution form, i.e., remove skewness by "smoothening" outliers
- Transform ALL data, of ALL variables that are going to be compared/related even if there are variables that aren't skewed. This isn't cheating!
- Do the statistic tests and analysis

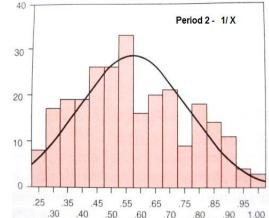




# **Correcting positively skewed data**


- Log transformation,  $X_{tr} \rightarrow Log(X)$ :
  - Reduces positive skew.
  - X must be greater than 0 (shifting might be needed)
- Square root transformation,  $X_{tr} \rightarrow sqrt(X)$ 
  - Brings large scores closer to the center
  - X must be greater than 0 (shifting might be needed)
- Reciprocal transformation,  $X_{tr} \rightarrow 1/X$ 
  - Reduces the impact of large scores
  - Reverses the scale. Therefore, prior to transformation we need to reverse scores ourselves (e.g. Xrev ← HighestX X). Then X<sub>tr</sub> → 1 /Xrev


For negatively skewed data, reverse the scores prior to the above transformations.
DBIS
DBIS


#### **Transformed data**

















#### Example:

- A professor is recording the score of a project report delivered by his students. He also takes a note to:
  - The percentage of the given bibliography studied (biblio)
  - Their attendaces in the lectures (lectures)
  - The number of student collaborated to deliver the report (participants).
- He collects the same data a year later (from the students of the new class) and looks for differences in performance.
  - Score= *function*(biblio, lectures, participants, year)





|                        |         | Bibliography        | Score    | Lectures | Participants |
|------------------------|---------|---------------------|----------|----------|--------------|
|                        |         | studied (%)         | (%)      | (%)      |              |
| Ν                      | Valid   | 100                 | 100      | 100      | 100          |
|                        | Missing | 0                   | 0        | 0        | 0            |
| Mean                   |         | 50,7100             | 58,1000  | 59,7650  | 4,8500       |
| Std error of Mean      |         | <mark>0,8260</mark> | 2,1316   | 2,1685   | .2706        |
| Median                 |         | 51,5000             | 60,0000  | 62,0000  | 4,0000       |
| Mode                   |         | 54,00               | 72,00    | 48,50    | 4,00         |
| Std. Deviation         |         | 8,2600              | 21,3156  | 21,6848  | 2,7057       |
| Variance               |         | 68,2282             | 454,3535 | 470,2296 | 7,3207       |
| Skewness               |         | -0,174              | -0,107   | -0,422   | 0,961        |
| Std. Error of skewness |         | 0,241               | 0,241    | 0,241    | 0,241        |
| Kurtosis               |         | 0,364               | -1,105   | -0,179   | 0,946        |
| Std. Error of kurtosis |         | 0,478               | 0,478    | 0,478    | 0,478        |
| Range                  |         | 46,00               | 84,00    | 92,00    | 13,00        |
| Minimum                |         | 27,00               | 15,00    | 8,00     | 1,00         |
| Maximum                |         | 73,00               | 99,00    | 100,00   | 14,00        |



**Comments on overall descriptives (previous table):** 

- The distribution of score for both years seems bimodal (could be a difference in performance by year)
- We can compare scores of two years (because each one comes from a normal distribution), but we can compare the whole dataset of scores to another similar dataset.
- The participants' distribution might also be due to different collaborations among years.
- We ask for descriptives per year



|                        | Year 2  | 010                         |              | Year 2011                             |      |  |  |  |
|------------------------|---------|-----------------------------|--------------|---------------------------------------|------|--|--|--|
|                        |         | Bibliography<br>studied (%) | Participants | Bibliography Participa<br>studied (%) | ints |  |  |  |
| N                      | Valid   | 50                          | 50           | N Valid 50                            | 50   |  |  |  |
|                        | Missing | 0                           | 0            | Missing 0                             | 0    |  |  |  |
| Mean                   |         | 40,1800                     | 4,1200       | Mean 76,0200 5,58                     | 800  |  |  |  |
| Std error of Mean      |         | 1,7803                      | 0,2922       | Std error of Mean 1,4432 0,43         | 343  |  |  |  |
| Median                 |         | 38,0000                     | 4,0000       | Median 75,0000 5,00                   | 000  |  |  |  |
| Mode                   |         | 34,00                       | 4,00         | Mode 72,00 5                          | 5,00 |  |  |  |
| Std. Deviation         |         | 12,5880                     | 2,0660       | Std. Deviation 10,2050 3,07           | 712  |  |  |  |
| Variance               |         | 158,4771                    | 4,2710       | Variance 104,1420 9,43                | 322  |  |  |  |
| Skewness               |         | 0,309                       | 0,512        | Skewness 0,272 0,7                    | 793  |  |  |  |
| Std. Error of skewness |         | 0,337                       | 0,337        | Std. Error of skewness 0,337 0,3      | 337  |  |  |  |
| Kurtosis               |         | -0,567                      | -0,484       | Kurtosis -0,264 0,2                   | 260  |  |  |  |
| Std. Error of kurtosis |         | 0,662                       | 0,662        | Std. Error of kurtosis 0,662 0,6      | 662  |  |  |  |
| Range                  |         | 51,00                       | 8,00         | Range 43,00 13                        | 3,00 |  |  |  |
| Minimum                |         | 15,00                       | 1,00         | Minimum 56,00 1                       | ,00  |  |  |  |
| Maximum                |         | 66,00                       | 9,00         | Maximum 99,00 14                      | 1,00 |  |  |  |



# **Testing normality of a distribution**

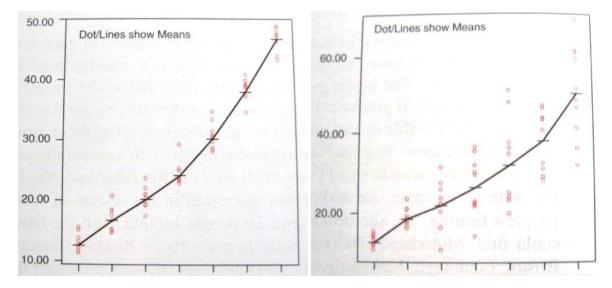
- Normality is not assessed visually (i.e., it looks normal to me)
- We mathematically examine whether a given distribution as a whole deviates from a comparable normal distribution (having same mean and same standard deviation).
- We use Kolmogorov-Smirnov and Shapiro-Wilk tests

"Is the given distribution different than normal?"

- None significant test outcome (p>. 05) indicates similar distribution, therefore normality
- A difference (outcome) found significant (p< 0.05) shows nonnormality

|              | Kolmogorov – Smirnov |     |                 |  | Shapiro – Wilk |     |              |
|--------------|----------------------|-----|-----------------|--|----------------|-----|--------------|
|              | Statistic            | df  | df Significance |  | Statistic df   |     | Significance |
| Score (%)    | .102                 | 100 | .012            |  | .961           | 100 | .005         |
| Participants | .153                 | 100 | .000            |  | .924           | 100 | .000         |

|              |      | Kolmogorov – Smirnov |    |              | Shapiro – Wilk |    |              |  |
|--------------|------|----------------------|----|--------------|----------------|----|--------------|--|
|              |      | Statistic            | df | Significance | Statistic      | df | Significance |  |
| Score (%)    | 2010 | .106                 | 50 | .200         | .972           | 50 | .283         |  |
| ]            | 2011 | .073                 | 50 | .200         | .984           | 50 | .715         |  |
| Participants | 2010 | .183                 | 50 | .000         | .941           | 50 | .015         |  |
| 1            | 2011 | .155                 | 50 | .004         | .932           | 50 | .007         |  |






# **Testing for homogeneity of variance**

- Homogeneity of variance is a requirement for parametric tests to be applied
- As you go through the levels of one variable, the variance of another variable must not change

"For how many hours do you feel sick after an extra pint of beer?"





# **Testing for homogeneity of variance**

- For groups of data we use Levene's test which reveals if there is homogeneity of variance.
- It test the hypothesis that "There is no difference between variances in the groups", i.e., the difference between variances is zero.
  - If the test outcome (difference) is found significantly different from 0
     (i.e., there is a difference and that is not a chance finding, p<.05) then
     we reject the null hypothesis and acknowledge heterogeneous
     variances.</li>
  - If the test outcome is found non-significant (error probability p>.05) then we accept the null hypothesis and consider the group data to be of homogeneous variance.

|              | Levene<br>statistic (d) | df1 | df2 | Significance |
|--------------|-------------------------|-----|-----|--------------|
| Score        | 2.584                   | 1   | 98  | 0.111 > 0.05 |
| Participants | 7.368                   | 1   | 98  | 0.008 < 0.05 |



### **Summary**

- What we 've seen
  - Examine data properly before proceeding to analysis
  - Look at the data distribution
  - Spot any problems (e.g. outliers)
  - In case of non-normality try to transform data
  - When comparing data from different groups look at distributions within each group
  - Also test for homogeneity of variance



## **References**

- Field, A. (2005). Discovering Statistics Using SPSS, 2<sup>nd</sup> ed., Sage Publications.
- Statsoft, Inc. (2011). Electronic Statistics Textbook. Tulsa, OK: Statsoft. WEB: http://www.statsoft.com/textbook/

