
MXML Storage
and the Problem of

Manipulation of Context

Nikolaos Fousteris 1 , Manolis Gergatsoulis 1 , Yannis Stavrakas 2

2 Institute for the Management
of Information Systems (IMIS),

R. C. Athena,
G. Mpakou 17, 11524, Athens,Greece.

yannis@inmis.gr

1 Department of Archives and Library Science,
Ionian University

Ioannou Theotoki 72,49100 Corfu, Greece.
{nfouster,manolis}@ionio.gr

1st Workshop on Digital Information Management March, 30-31, 2011
Corfu, Greece

2

Introduction & Motivation

� The problem of storing and querying XML data
using relational databases has been considered
a lot

� Multidimensional XML is an extension of XML
and it is used for representing data that assume
different facets, having different values or
structure, under different contexts

� We expand the problem of storing and querying
XML to multidimensional XML data

3

Outline

� XML Storage
� Multidimensional XML(MXML)

� Fundamental concepts
� MXML example and graphical representation

� MXML Storage
� Two storing approaches are presented

� Context Representation
� Multidimensional XPath (MXPath)
� Context Comparison
� Summary & Future work

4

XML Storage (1/2)

� Includes techniques to store XML data in
Relational Databases

� XML applications (internet applications)
are able to exploit the advantages of the
RDBMS technology

� Operations over XML data, are
transformed to operations over the
Relational Schema

5

XML Storage (2/2)

� A Relational Schema is chosen for storing XML data
� XML queries are produced by applications
� XML queries are translated to SQL queries
� SQL queries are executed
� Results are translated back to XML and returned to the

application

� Methodology

� Techniques
� Schema Based
� Schema Oblivious

6

Multidimensional XML (MXML)
Fundamental Concepts (1/3)

� MXML is an extension of XML

� In MXML data assume different facets,
having different value or structure, under
different contexts according to a number of
dimensions which may be applied to
elements and attributes

7

MXML – Fundamental Concepts (2/3)

� Dimension: is a variable. Assigning different
values for each dimension it is possible to
construct different environments for MXML data

� World: represents an environment under which
data obtain a meaning and is determined by
assigning to every dimension a single value

� Context Specifier: specifies a set of worlds
(context) under which a facet of an MXML element
or attribute, is the holding facet of this element or
attribute

8

MXML – Example

<bookisbn=[edition=english]"0-13-110362-8"[/]
[edition=greek]"0-13-110370-9"[/]>

<title>The C programming language</title>
<authors>

<author>Brian W. Kernighan</author>
<author>Dennis M. Ritchie</author>

</authors>
<@publisher>
[edition = english]<publisher>Prentice Hall</publisher>[/]
[edition = greek]<publisher>Klidarithmos</publisher>[/]
</@publisher>
<@translator>
[edition = greek]<translator>Thomas Moraitis</translator>[/]
</@translator>
<@price>

…….

Multidimensional
elements/attributes are
elements/attributes that
have different facets
under different
contexts.

Each multidimensional
element/attribute
contains one or more
facets, called Context
element/attributes.

9

MXML Graphical Representation

10

MXML – Fundamental Concepts (3/3)

� Explicit Context: Is the true context only within
the boundaries of a single multidimensional
element/attribute.

� Inherited Context: Is the context, which is
inherited from a ancestor node to a descendant
node in the MXML graph.

� Inherited Context Coverage: It constraints the
inherited context of a node, so as to contain only
the worlds under which the node has access to
some value node.

11

MXML Storage (1/2)

� MXML storage includes techniques that
store MXML data in Relational Databases.

� Applications using MXML storage are able
to exploit the advantages of the RDBMS
technology.

� MXML additional features (context,
different types of MXML nodes/edges etc.)
should be considered.

12

MXML Storage (2/2)

� Naive approach
Uses a single table (Node Table), to store all
information contained in a MXML document.
Each row of the table represents a MXML node
of the MXML graph.

� Type Approach
MXML nodes are divided into groups according
to their type. Each group is stored in a separate
table named after the type of the nodes.

13

Naive Approach

Node Table :

Stores each MXML node in a row.

14

Type Approach

Type Tables:

Store each MXML node in a row of a
specific table according to node’s type.

15

Comparison

� Naive approach
� is straightforward
� appear many NULL values
� queries involve a large number of self-joins of the Node

Table

� Type Approach
� avoids NULL values
� reduces the size of the tables involved in joins

(performance)

16

Context Representation (1/6)

Question

How can we represent in a Relational Database
the set of worlds which are contained in a context

specifier, for each MXML node?

17

Context Representation (1/6)

Possible Worlds Table:

Assigns a unique ID to each possible
combination of dimension values (world).

Explicit Context Table:

Represents the explicit context (set of
worlds) for a MXML node.

Inherited Context Coverage Table:

Assigns an inherited context coverage
(set of worlds) to a MXML node.

Naive Representation of Context

18

Context Representation (2/6)
Naive Representation of Context

19

Context Representation (1/7)

Problems
of Naive Representation of Context

� It is needed one row for each possible world in the
Possible Words Table

� More than one entries in the Explicit Context Table
or the Inherited Coverage Table are required to
represent the context of one MXML node

� SQL queries derived from MXML queries contain
joins with the Possible Words Table

20

Context Representation (2/7)

Basic idea : Total ordering of worlds based on:

� Total ordering of dimensions

� Total ordering of dimension values

For k dimensions with each dimension i having zi
possible values, we may have n=z1*z2*….*zk

possible ordered worlds.
Each world is assigned a unique integer value

between 1 and n (w1 to wn).

Ordered -Based Representation of Context

21

Context Representation (3/7)

dimensions ordering

dimension values
ordering

possible worlds
ordering

Ordered-Based Representation of Context

22

Context Representation (4/7)

World Vector :
� A binary number representing a context specifier.
The position of every bit corresponds to the
position of a world in the total ordering of all
possible worlds.

� Each bit of the world vector has two possible
values: 1 if the corresponding world exists in
context specifier or 0 if it does not)

binary digit for Wi
1 or 0: world exists or not

……binary digit for W1 …… binary digit for Wn
n=possible worlds number

possible worlds ordering

Ordered-Based Representation of Context

23

Context Representation (5/7)

Finding position “i” of a world (belonging to a context
specifier) in the world vector
Ex: node 27 ”ed=en” => world_vector = 00 11 ,positions 3 (w3) and 4 (w4)

ordered worlds:
w1=(gr,stud) w2=(gr,lib) w4=(en,lib)w3=(en,stud)

Ordered-Based
Representation of Context

24

Context Representation (6/7)

Finding worlds
(belonging to a context specifier)
from
the position of the “ 1” bit values
in a world vector

Ex: world_vector of node 27 = 0011

= “ed=en”(en,lib)(en,stud)

Ordered-Based
Representation of Context

25

Explicit Context Table:

Assigns an explicit context
(expressed in binary format
according to world vector
representation) to a MXML node.

Inherited Context Coverage Table:

Assigns an inherited context coverage
(expressed in binary format according to
world vector representation) to a MXML
node.

Context Representation (7/7)
Ordered-Based
Representation of Context

26

Multidimensional XPath (MXPath) (1/2)

MXPath:
� An extension of XPath able to easily express

context-aware queries on MXML data.
� Both explicit context (ec) and inherited context

coverage (icc) are used to navigate over
multidimensional elements and attributes.

� Conditions on the explicit context at any point
of the path are allowed.

� Both multidimensional and context nodes can
be returned.

27

MXPath example:
[icc() >= “-”],/child::book
/child::cover[ec() >= “ed=gr”]/child->picture

Result

Query in English:

Find the (multidimensional) sub-
element picture of element cover of
the greek edition of the book.

cover[ec() >= “ed=gr”]
is anexplicit context qualifier. The
functionec() returns the explicit
context of a node. The above qualifier
says that the ec of the node cover must
be superset of the context described
by the context specifier[ed=gr].

Multidimensional XPath (MXPath) (2/2)

28

Context Comparison (1/2)

Using expression [ec()>=“ed=gr”], we need to compare the
context specifier “ed=gr” with the context specifiers, which are
stored in the Relational Database in order to evaluate MXML
query.

How can we do this using the Ordered-Based representation?

Basic idea

MXPath query example:
[icc() >= “-”],/child::book
/child::cover[ec() >= “ed=gr”]/child->picture

29

Context Comparison (2/2)
Let Q1(stored),Q2(query) context specifiers and

G(Q1),G(Q2) the binary world vectors of Q1,Q2

Q1=Q2 <=> G(Q1)=G(Q2) equivalently
Q1=Q2 <=> (G(Q1) XOR G(Q2))=0
Q1!=Q2 <=> NOT(G(Q1)=G(Q2))
Q1≥Q2 <=> (G(Q1) AND G(Q2))=G(Q2)
Q1>Q2 <=> ((G(Q1) AND G(Q2))=G(Q2)) AND (G(Q1)≠G(Q2))
Q1≤Q2 if Q2≥Q1 and Q1<Q2 if Q2>Q1

Note: These rules help on transforming MXML queries to SQL queries

Comparing Q1 with Q2:

30

Summary
� MXML data representation
� Storing MXML in Relational DB

(2 relational schemas were presented)
� MXML querying using MXPath & Query transformation

including context representation

Future work
� Algorithm construction and evaluation for query

transformation
� Use of alternative indexing techniques for improving

relational schema and query performance

31

References

1. N. Fousteris, Y. Stavrakas, and M. Gergatsoulis.
Multidimensional XPath. In Proc. of iiWAS 2008 , pp. 162-169.
ACM, 2008 .

2. Y. Stavrakas, and M. Gergatsoulis. Multidimensional
Semistructured Data: Representing Context-Dependent
Information on the Web. In Proc. of CAiSE'02, pp. 183-199,
Springer 2002.

3. I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram,
E. J. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In Proc. of the 2002
ACM SIGMOD Int.Conf. on Management of Data, pp. 204-
215. ACM, 2002.

32

Thank you..

