March, 30-31, 2011 Corfu, Greece

# MXML Storage and the Problem of Manipulation of Context

Nikolaos Fousteris<sup>1</sup>, Manolis Gergatsoulis<sup>1</sup>, Yannis Stavrakas<sup>2</sup>

<sup>1</sup> Department of Archives and Library Science, Ionian University Ioannou Theotoki 72,49100 Corfu, Greece. {nfouster,manolis}@ionio.gr

 <sup>2</sup> Institute for the Management of Information Systems (IMIS), R. C. Athena,
G. Mpakou 17, 11524, Athens,Greece. yannis@inmis.gr



## **Introduction & Motivation**

- The problem of storing and querying XML data using relational databases has been considered a lot
- Multidimensional XML is an extension of XML and it is used for representing data that assume different facets, having different values or structure, under different contexts
- We expand the problem of storing and querying XML to multidimensional XML data



## **Outline**

- XML Storage
- Multidimensional XML(MXML)
  - Fundamental concepts
  - MXML example and graphical representation
- MXML Storage
  - Two storing approaches are presented
- Context Representation
- Multidimensional XPath (MXPath)
- Context Comparison
- Summary & Future work



# XML Storage (1/2)

- Includes techniques to store XML data in Relational Databases
- XML applications (internet applications) are able to exploit the advantages of the RDBMS technology
- Operations over XML data, are transformed to operations over the Relational Schema



# XML Storage (2/2)

### Methodology

- A Relational Schema is chosen for storing XML data
- XML queries are produced by applications
- XML queries are translated to SQL queries
- SQL queries are executed
- Results are translated back to XML and returned to the application

### Techniques

- Schema Based
- Schema Oblivious



Multidimensional XML (MXML) Fundamental Concepts (1/3)

- MXML is an extension of XML
- In MXML data assume different facets, having different value or structure, under different contexts according to a number of dimensions which may be applied to elements and attributes



### MXML – Fundamental Concepts (2/3)

- <u>Dimension</u>: is a variable. Assigning different values for each dimension it is possible to construct different environments for MXML data
- <u>World</u>: represents an <u>environment</u> under which data obtain a meaning and is determined by assigning to every dimension a single value
- Context Specifier: specifies a set of worlds (context) under which a facet of an MXML element or attribute, is the holding facet of this element or attribute



### **MXML – Example**

<book isbn=[edition=english]"0-13-110362-8"[/] [edition=greek]"0-13-110370-9"[/]> <title>The C programming language</title> <authors> <author>Brian W. Kernighan</author> <author>Dennis M. Ritchie</author> </authors> <@publisher> [edition = english] <publisher>Prentice Hall</publisher>[/] [edition = greek] <publisher>Klidarithmos</publisher>[/] </@publisher> <@translator> [edition = greek] <translator>Thomas Moraitis</translator>[/] </@translator> <@price>

#### **Multidimensional**

elements/attributes are elements/attributes that have different facets under different contexts.

Each multidimensional element/attribute contains one or more facets, called <u>Context</u> <u>element/attributes</u>.

### **MXML Graphical Representation**



### MXML – Fundamental Concepts (3/3)

- <u>Explicit Context</u>: Is the true context only within the boundaries of a single multidimensional element/attribute.
- Inherited Context: Is the context, which is inherited from a ancestor node to a descendant node in the MXML graph.
- Inherited Context Coverage: It constraints the inherited context of a node, so as to contain only the worlds under which the node has access to some value node.



# MXML Storage (1/2)

- MXML storage includes techniques that store MXML data in Relational Databases.
- Applications using MXML storage are able to exploit the advantages of the RDBMS technology.
- MXML additional features (context, different types of MXML nodes/edges etc.) should be considered.



# MXML Storage (2/2)

### Naive approach

Uses a single table (Node Table), to store all information contained in a MXML document. Each row of the table represents a MXML node of the MXML graph.

### Type Approach

MXML nodes are divided into groups according to their type. Each group is stored in a separate table named after the type of the nodes.





Node Table:

[ed=gr]

[]

. . . .

[c\_type=stud]

. . . .

CA

VN

ME

CE

VN

....

CE

....

### Stores each MXML node in a row.

|   |           |         | Ne                    | ode Table     |                        |                  |
|---|-----------|---------|-----------------------|---------------|------------------------|------------------|
| Ь | parent_id | ordinal | $\operatorname{tag}$  | value         | type                   | explicit_context |
|   | 0         | 1       | $\operatorname{book}$ | -             | CE                     | -                |
|   | 1         | 1       | isbn                  | -             | $\mathbf{M}\mathbf{A}$ | -                |
|   | 2         | 1       | isbn                  | -             | CA                     | [ed=en]          |
|   | 3         | 1       | -                     | 0-13-110362-8 | VN                     | -                |

## **Type Approach**

"0-13-11

0362-8"

"0-13-11

0370-9"

programming

language"

database & information systems group

ionian university



specific table according to node's type.



### Naive approach

- is straightforward
- appear many NULL values
- queries involve a large number of self-joins of the Node Table
- Type Approach
  - avoids NULL values
  - reduces the size of the tables involved in joins (performance)



## **Context Representation (1/6)**

### Question

How can we represent in a Relational Database the set of worlds which are contained in a context specifier, for each MXML node?



### Context Representation (1/6) Naive Representation of Context

### Possible Worlds Table:

Assigns a unique ID to each possible combination of dimension values (world).

### **Explicit Context Table:**

Represents the explicit context (set of worlds) for a MXML node.

### Inherited Context Coverage Table:

Assigns an inherited context coverage (set of worlds) to a MXML node.

|   | Possible Worlds Table |                     |                       |  |
|---|-----------------------|---------------------|-----------------------|--|
| [ | world_id              | edition             | $customer_type$       |  |
|   | 1                     | $\operatorname{gr}$ | $\operatorname{stud}$ |  |
|   | 2                     | $\operatorname{gr}$ | lib                   |  |
|   | 3                     | $\mathbf{en}$       | $\operatorname{stud}$ |  |
|   | 4                     | $\mathbf{en}$       | lib                   |  |

| Explicit | Context T     | able     |                  |
|----------|---------------|----------|------------------|
| node_id  | world_i       | d        |                  |
| 1        | 1             | Inherite | d Coverage Table |
| 1        | 2<br>3        | node_id  | world_id         |
| 1        | 4             | 1        | 1                |
|          |               |          | 2                |
| 5        | $\frac{1}{2}$ | 1        | 4                |
| 6        | 1             |          |                  |
| 6        | 2             | 5        | 1                |
| 6        | 3             | 6        | $\frac{2}{1}$    |
|          | 4             | 6        | 2                |
|          |               |          |                  |



## **Context Representation (2/6)**

### **Naive** Representation of Context



## **Context Representation (1/7)**

### **Problems**

of Naive Representation of Context

- It is needed one row for each possible world in the Possible Words Table
- More than one entries in the Explicit Context Table or the Inherited Coverage Table are required to represent the context of one MXML node
- SQL queries derived from MXML queries contain joins with the Possible Words Table



Context Representation (2/7) Ordered-Based Representation of Context

**Basic idea**: Total ordering of worlds based on:

- Total ordering of dimensions
- Total ordering of dimension values

For k dimensions with each dimension i having zi possible values, we may have n=z1\*z2\*....\*zk possible ordered worlds.

Each world is assigned a unique integer value between 1 and n (w1 to wn).



# **Context Representation (3/7)**

**Ordered-Based** Representation of Context





# **Context Representation (4/7)**

**Ordered-Based** Representation of Context

### World Vector:

 A binary number representing a context specifier. The position of every bit corresponds to the position of a world in the total ordering of all possible worlds.

 Each bit of the world vector has two possible values: 1 if the corresponding world exists in context specifier or 0 if it does not)

| binary digit for W1 | <br>binary digit for Wi<br>1 or 0: world exists or not | <br>binary digit for Wn<br>n=possible worlds number |
|---------------------|--------------------------------------------------------|-----------------------------------------------------|
|                     |                                                        |                                                     |

possible worlds ordering





 $i = pk + (p(k-1) - 1)^{*}zk + (p(k-2) - 1)^{*}zk^{*}z(k-1) + \dots + (p1 - 1)^{*}zk^{*}z(k-1)^{*}\dots^{*}z2$ 

w3=(en.stud)

### Finding position "i" of a world (belonging to a context specifier) in the world vector Ex: node 27 "ed=en" => world\_vector = 0011 ,positions 3 (w3) and 4 (w4)

w2=(gr,lib)

w1=(gr,stud)

ordered worlds:



w4=(en,lib)

## **Context Representation (6/7)**

**Ordered-Based** 

Representation of Context

E 26 price [ed=gr, c\_type=lit c\_type=stud] E 27 price E 29 Finding worlds (belonging to a context specifier) from the position of the "1" bit values in a world vector

Ex: world\_vector of node 27 = 0011

(en,lib)

(en,stud)



= "ed=en"

# **Context Representation (7/7)**

**Ordered-Based** 

Representation of Context

**Explicit Context Table:** 

Assigns an **explicit context** (expressed in binary format according to world vector representation) to a MXML node.

### Inherited Context Coverage Table:

Assigns an **inherited context coverage** (expressed in binary format according to world vector representation) to a MXML node.



| Explicit Context Table |              |  |
|------------------------|--------------|--|
| node_id                | world_vector |  |
| 1                      | 1111         |  |
| 2                      | 1111         |  |
| 3                      | 1100         |  |
|                        |              |  |
| 31                     | 0100         |  |
|                        |              |  |
| 43                     | 1010         |  |
|                        |              |  |

| Inherited Coverage Table |                 |  |
|--------------------------|-----------------|--|
| node_id                  | $world\_vector$ |  |
| 1                        | 1111            |  |
| 2                        | 1111            |  |
| 3                        | 1100            |  |
| 4                        | 1100            |  |
| 5                        | 0011            |  |
| 6                        | 0011            |  |
|                          |                 |  |

## Multidimensional XPath (MXPath) (1/2)

### MXPath:

- An extension of XPath able to easily express context-aware queries on MXML data.
- Both explicit context (ec) and inherited context coverage (icc) are used to navigate over multidimensional elements and attributes.
- Conditions on the explicit context at any point of the path are allowed.
- Both multidimensional and context nodes can be returned.



## Multidimensional XPath (MXPath) (2/2)

### MXPath example:

[icc() >= "-"],/child::book

/child::cover[ec() >= "ed=gr"]/child->picture



#### Query in English:

Find the (multidimensional) subelement <u>picture</u> of element <u>cover</u> of the greek edition of the <u>book.</u>

cover[ec() >= "ed=gr"]

is an *explicit context qualifier*. The function ec() returns the explicit context of a node. The above qualifier says that the ec of the node cover must be superset of the context described by the context specifier [ed=gr].

# **Context Comparison (1/2)**

MXPath query example: [icc() >= "-"],/child::book /child::cover[ec() >= "ed=gr"]/child->picture

### **Basic idea**

Using expression [ec()>="ed=gr"], we need to compare the context specifier "ed=gr" with the context specifiers, which are stored in the Relational Database in order to evaluate MXML query.

How can we do this using the Ordered-Based representation?



# **Context Comparison (2/2)**

Let Q1(stored),Q2(query) context specifiers and G(Q1),G(Q2) the binary world vectors of Q1,Q2

### **Comparing Q1 with Q2:**

Q1=Q2 <=> G(Q1)=G(Q2) equivalently Q1=Q2 <=> (G(Q1) XOR G(Q2))=0 Q1!=Q2 <=> NOT(G(Q1)=G(Q2)) Q1>Q2 <=> (G(Q1) AND G(Q2))=G(Q2) Q1>Q2 <=> ((G(Q1) AND G(Q2))=G(Q2)) AND (G(Q1) $\neq$ G(Q2)) Q1<Q2 if Q2>Q1 and Q1<Q2 if Q2>Q1

Note: These rules help on transforming MXML queries to SQL queries



## **Summary**

- MXML data representation
- Storing MXML in Relational DB (2 relational schemas were presented)
- MXML querying using MXPath & Query transformation including context representation

## **Future work**

- Algorithm construction and evaluation for query transformation
- Use of alternative indexing techniques for improving relational schema and query performance



## **References**

- N. Fousteris, Y. Stavrakas, and M. Gergatsoulis. *Multidimensional XPath*. In *Proc. of iiWAS 2008*, pp. 162-169. ACM, 2008.
- 2. Y. Stavrakas, and M. Gergatsoulis. *Multidimensional Semistructured Data: Representing Context-Dependent Information on the Web.* In *Proc. of CAiSE'02*, pp. 183-199, Springer 2002.
- I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang. *Storing and querying ordered XML using a relational database system*. In *Proc. of the 2002 ACM SIGMOD Int.Conf. on Management of Data*, pp. 204-215. ACM, 2002.





# Thank you..

