
Domain-Speci�c Keyphrase Extraction

Eibe Frank and Gordon W. Paynter and Ian H. Witten

Department of Computer Science

University of Waikato

Hamilton, New Zealand

Carl Gutwin

Department of Computer Science

University of Saskatchewan

Saskatoon, Canada

Craig G. Nevill-Manning

Department of Computer Science

Rutgers University

Piscataway, New Jersey, USA

Abstract

Keyphrases are an important means of doc-
ument summarization, clustering, and topic
search. Only a small minority of documents
have author-assigned keyphrases, and manually
assigning keyphrases to existing documents is
very laborious. Therefore it is highly desirable
to automate the keyphrase extraction process.

This paper shows that a simple procedure for
keyphrase extraction based on the naive Bayes
learning scheme performs comparably to the
state of the art. It goes on to explain how
this procedure's performance can be boosted by
automatically tailoring the extraction process
to the particular document collection at hand.
Results on a large collection of technical reports
in computer science show that the quality of
the extracted keyphrases improves signi�cantly
when domain-speci�c information is exploited.

1 Introduction

Keyphrases give a high-level description of a document's
contents that is intended to make it easy for prospec-
tive readers to decide whether or not it is relevant for
them. But they have other applications too. Because
keyphrases summarize documents very concisely, they
can be used as a low-cost measure of similarity between
documents, making it possible to cluster documents into
groups by measuring overlap between the keyphrases
they are assigned. A related application is topic search:
upon entering a keyphrase into a search engine, all doc-
uments with this particular keyphrase attached are re-
turned to the user. In summary, keyphrases provide a
powerful means for sifting through large numbers of doc-
uments by focusing on those that are likely to be rele-
vant.
Unfortunately, only a small fraction of documents have

keyphrases assigned to them|mostly because authors
only provide keyphrases when they are explicitly in-
structed to do so|and manually attaching keyphrases

to existing documents is a very laborious task. There-
fore, ways of automating this process using arti�-
cial intelligence|more speci�cally, machine learning
techniques|are of interest. There are two di�erent ways
of approaching the problem: keyphrase assignment and
keyphrase extraction. In keyphrase assignment, also
known as text categorization [Dumais et al., 1998], it is
assumed that all potential kephrases appear in a prede-
�ned controlled vocabulary|the categories. The learn-
ing problem is to �nd a mapping from documents to cat-
egories using a set of training documents, which can be
accomplished by training a classi�er for each category,
using documents that belong to it as positive examples
and the rest as negative ones. A new document is then
processed by each of the classi�ers and assigned to those
categories whose classi�ers identify it as a positive exam-
ple. The second approach, keyphrase extraction, which
we pursue in this paper, does not restrict the set of pos-
sible keyphrases to a selected vocabulary. On the con-
trary, any phrase in a new document can be identi�ed|
extracted|as a keyphrase. Using a set of training doc-
uments, machine learning is used to determine which
properties distinguish phrases that are keyphrases from
ones that are not.
Turney [1999] describes a system for keyphrase ex-

traction, GenEx, based on a set of parametrized heuris-
tic rules that are �ne-tuned using a genetic algorithm.
The genetic algorithm optimizes the number of cor-
rectly identi�ed keyphrases in the training documents
by adjusting the rules' parameters. Turney compares
GenEx to the straightforward application of a stan-
dard machine learning technique|bagged decision trees
[Breiman, 1996]|and concludes that it gives superior
performance. He also shows that GenEx generalizes well
across collections: when trained on a collection of jour-
nal articles it successfully extracts keyphrases from web
pages on a di�erent topic. This is an important feature
because training GenEx on a new collection is computa-
tionally very expensive.
This paper briey summarizes the Kea keyphrase ex-

traction algorithm, and goes on to show that it gen-
eralizes as well as GenEx across collections. In con-

trast to GenEx, however, it does not employ a special-
purpose genetic algorithm for training and keyphrase
extraction: it is based on the well-known naive Bayes
machine learning technique. Training is therefore much
quicker. The main �nding of this paper is that perfor-
mance can be boosted signi�cantly if Kea is trained on
documents that are from the same domain as those from
which keyphrases are to be extracted. This allows us to
capitalize on speedy training, because deriving domain-
speci�c models would be less practical with the original
lengthy genetic algorithm approach.
Section 2 summarizes the Kea algorithm for keyphrase

extraction, and shows that it performs comparably to
GenEx if used in the same domain-independent set-
ting. Section 3 explains a simple enhancement that en-
ables Kea to exploit collection-speci�c information about
keyphrases, and shows how this addition boosts perfor-
mance on a large collection of computer science technical
reports. The main �ndings of this paper are summarized
in Section 4.

2 Keyphrase Extraction using Naive

Bayes

Keyphrase extraction is a classi�cation task: each phrase
in a document is either a keyphrase or not, and the prob-
lem is to correctly classify a phrase into one of these two
categories. Machine learning provides o�-the-shelf tools
for this kind of situation. In machine learning termi-
nology, the phrases in a document are \examples" and
the learning problem is to �nd a mapping from the exam-
ples to the two classes \keyphrase" and \not-keyphrase".
Machine learning techniques can automatically generate
this mapping if they are provided with a set of training
examples, that is, examples with class labels assigned to
them. In our context, these are simply phrases which
have been identi�ed as either being keyphrases or not.
Once the learning method has generated the mapping
given the training data, it can be applied to unlabeled
data, in other words, it can be used to extract keyphrases
from new documents.

2.1 Generating Candidate Phrases

Not all phrases in a document are equally likely to be
keyphrases a priori. In order to facilitate the learn-
ing process, most phrases that appear can be eliminated
from the set of examples that are presented to the learn-
ing scheme.
First, the input text is split up according to phrase

boundaries (punctuation marks, dashes, brackets, and
numbers). Non-alphanumeric characters (apart from in-
ternal periods) and all numbers are deleted. Kea takes
all subsequences of these initial phrases up to length
three as candidate phrases. It then eliminates those
phrases that begin, or end, with a stopword. It also
deletes phrases that consist merely of a proper noun. In
the next step, all words are case-folded and stemmed
using the iterated Lovins stemmer [Lovins, 1968], and

stemmed phrases that occur only once in the document
are removed.

2.2 Building the Model

So far we have shown how candidate phrases are gener-
ated. However, in conventional machine learning terms,
phrases by themselves are useless|it is their properties,
or \attributes," that are important. Several plausible
attributes immediately spring to mind: the number of
words in a phrase, the number of characters, the position
of the phrase in the document, etc. However, in our ex-
periments, only two attributes turned out to be useful in
discriminating between keyphrases and non-keyphrases:
the TF�IDF score of a phrase, and the distance into the
document of the phrase's �rst appearance. In the follow-
ing we explain how these attributes are computed and
how a naive Bayes model [Domingos and Pazzani, 1997]
is built from them.
The TF�IDF score of a phrase is a standard metric

in information retrieval. It is designed to measure how
speci�c a phrase P is to a given document D:

TF�IDF(P;D) = Pr[phrase in D is P]�

� logPr[P in a document]:

The �rst probability in this equation is estimated by
counting the number of times the phrase P occurs in
the document D, and the second one by counting the
number of documents in the training corpus that contain
P (excluding D).1

The distance of a phrase from the beginning of a doc-
ument is calculated as the number of words that precede
its �rst appearance, divided by the number of words in
the document. The resulting feature is a number be-
tween 0 and 1 that represents the proportion of the doc-
ument preceding the phrase's �rst appearance.
Both these attributes are real numbers. The naive

Bayes learning method can process numeric attributes
by assuming, for example, that they are normally dis-
tributed. However, we obtained better results by dis-
cretizing the attributes prior to applying the learning
scheme [Domingos and Pazzani, 1997]. This indicates
that the normal distribution is not appropriate in this
application. Discretization quantizes a numeric attribute
into ranges so that the resulting new attribute can be
treated as a nominal one: each value represents a range
of values of the original numeric attribute. Kea uses
Fayyad and Irani's [1993] discretization scheme, which
is based on the Minimum Description Length principle.
It recursively splits the attribute into intervals, at each
stage minimizing the entropy of the class distribution.
It stops splitting when the total cost for encoding both
the discretization and the class distribution cannot be
reduced further.
The naive Bayes learning scheme is a simple applica-

tion of Bayes' formula. It assumes that the attributes|
in this case TF�IDF and distance|are independent

1The counters are initialized to one to avoid taking the
logarithm of zero.

given the class. Making this assumption, the probability
that a phrase is a keyphrase given that it has discretized
TF�IDF value T and discretized distance D is:

Pr[keyjT;D] =
Pr[T jkey]� Pr[Djkey]� Pr[key]

Pr[T;D]
;

where Pr[T jkey] is the probability that a keyphrase has
TF�IDF score T , Pr[Djkey] the probability that it has
distance D, Pr[key] the a priori probability that a phrase
is a keyphrase, and Pr[T;D] a normalization factor that
makes Pr[keyjT;D] lie between zero and one. All these
probabilities can be estimated reliably by counting the
number of times the corresponding event occurs in the
training data.2

It has been shown that naive Bayes can be a very
accurate classi�cation method even if the independence
assumption is not correct [Domingos and Pazzani, 1997].
However, it can be argued that the two attributes we use,
TF�IDF and distance, are close to being independent
given the class. This implies that naive Bayes is close to
being the optimum classi�cation method for this appli-
cation, and might be the reason why it performs better
than all other learning methods that we have investi-
gated. (In particular it performs better than bagged
decision trees, as we show in Section 2.4.)

2.3 Extracting Keyphrases

Kea uses the procedure described above to generate a
naive Bayes model from a set of training documents for
which keyphrases are known (typically because the au-
thor provided them). The resulting model can then be
applied to a new document from which keyphrases are
to be extracted.
First, Kea computes TF�IDF scores and distance val-

ues for all phrases in the new document using the pro-
cedure described above, taking the discretization ob-
tained from the training documents. (Both attributes
can be computed without knowing whether a phrase is
a keyphrase or not.) The naive Bayes model is then ap-
plied to each phrase, computing the estimated probabil-
ity of it being a keyphrase. The result is a list of phrases
ranked according to their associated probabilities. As-
suming that the user wants to extract r keyphrases, Kea
then outputs the r highest ranked phrases.
There are two special cases that have to be addressed

in order to achieve optimum performance. First, if two
phrases have equal probability|which is quite likely to
happen due to the discretization|they are ranked ac-
cording to their TF�IDF score (in its pre-discretized
form). Second, if a phrase is a subphrase of another
phrase, it is only accepted as a keyphrase if it is ranked
higher; otherwise it is deleted from the list before the r
top-ranking phrases are output.

2.4 Experimental Results

We have evaluated Kea on several di�erent document
collections with author-assigned keyphrases. Our cri-

2The naive Bayes implementation used by Kea initializes
all counts to one.

terion for success is the extent to which Kea produces
the same stemmed phrases as authors do.3 Because this
method of evaluation is the same as used by Turney
[1999], we can directly compare Kea's performance to
his results.

Comparison to GenEx

We compared Kea and GenEx using two experimental
settings from Turney's paper.4 The �rst one involves
training and testing on journal articles. In this setting,
55 articles are used for training (6 from the Journal of the
International Academy of Hospitality Research, 2 from
The Neuroscientist, 14 from the Journal of Computer-
Aided Molecular Design, and 33 from Behavioral and
Brain Sciences), and 20 for testing (all from Psycoloquy).
In the second setting, the same documents are used for
training but 35 FIPS web pages are used for testing.
Table 1 shows the number of correctly identi�ed

author-provided keyphrases among the �ve and �fteen
top-ranking phrases output by the extraction algorithms.
Four extraction algorithms are represented: GenEx, �fty
bagged C4.5 decision trees [Quinlan, 1992] as used by
Turney, Kea, and Kea using �fty bagged C4.5 trees in-
stead of the naive Bayes learning scheme. Results for
the �rst two methods are from Turney's paper.5 The
third scheme is the standard Kea algorithm that we have
described. In the fourth, bagged C4.5 trees were used
instead of discretization and naive Bayes, with all the
standard pre- and post-processing done by Kea. This
variation of Kea is computationally much more expen-
sive (by a factor of at least �fty).
Turney found bagged C4.5 trees to perform universally

worse than GenEx, but in only one of the four experi-
mental settings from Table 1, Journal/FIPS with cuto�
of �ve, was the di�erence statistically signi�cant. Kea
sometimes performs worse than GenEx and sometimes
better; the di�erences are not statistically signi�cant (at
the 5% level, according to a t-test). Moreover, Kea-C4.5
performs much better than Turney's C4.5 in the case
where the latter does signi�cantly worse than GenEx.
We conclude that GenEx and Kea perform at about the
same level, Kea-C4.5 seems slightly worse but the dif-
ference is not statistically signi�cant on these datasets.
The only statistically signi�cant result is the poor per-
formance that Turney observed in one case with C4.5.
The di�erence between Turney's �ndings for bagged

C4.5 trees and ours deserves some explanation. Tur-
ney uses many more attributes|among them distance|
but he does not use TF�IDF. Moreover, he performs no
post-processing for C4.5|although he does for GenEx|

3Author-assigned keyphrases are, of course, deleted from
the documents before they are given to Kea.

4We could not compare Kea on the other document col-
lections used by Turney because we did not have access to
his corpus of email messages, which contains con�dential
information.

5To get the number of correctly identi�ed keyphrases, Tur-
ney's \precision" �gures were multiplied by the cuto� em-
ployed (�ve or �fteen).

Experimental conditions Turney [1999]'s results Kea results
Training/testing Cuto� GenEx C4.5 Kea Kea-C4.5
Journal/Journal 5 1.45�1.24 1.40�1.28 1.35�0.93 1.20�0.83

15 2.65�1.95 2.55�1.70 2.75�1.25 2.70�1.38
Journal/FIPS 5 1.43�0.85 0.77�0.81 1.46�0.98 1.40�0.95

15 2.46�1.17 2.12�0.99 2.20�1.35 2.26�1.32

Table 1: Experimental results for di�erent extraction algorithms

whereas we remove subphrases if they do not perform
better than their superphrases. These appear to be the
main di�erences between his way of applying C4.5 and
ours.

Changing the Amount of Training Data

An interesting question is how Kea's performance scales
with the amount of training data available. In order to
investigate this, we performed experiments with a large
collection of computer science technical reports (CSTR)
from the New Zealand Digital Library (www.nzdl.org).
The documents in CSTR are fairly noisy, partly be-
cause the source �les have been extracted automati-
cally from PostScript. Also, they contain on average
fewer keyphrases than the other collections. This makes
keyphrase extraction in this domain more di�cult than
in the other corpuses.
There are two potential ways in which the corpus of

documents that is available can inuence Kea's perfor-
mance on fresh data. First, training documents are
used when computing both the discretization of the at-
tributes, and the corresponding counts for the naive
Bayes model. It is essential that these documents
have keyphrases assigned to them because the learning
method needs labeled examples. Second, the document
corpus supports the learning process when each phrase's
\document frequency" is calculated|this is used for de-
riving its TF�IDF score. In this case the documents
need not be labeled. Our experiments showed that no
further performance improvement was gained by increas-
ing the number of documents used to compute the doc-
ument frequencies beyond 50.
To illustrate the e�ect of training set size, Figure 1

shows Kea's performance on an independent set of
500 test documents. It plots the number of \correct"
keyphrases, for both �ve and �fteen phrases extracted,
against the number of documents used for training, from
1 through 130 �les. The error bars give 99% con�dence
intervals derived by training Kea on ten di�erent train-
ing sets of the same size. We used the same independent
100 documents for calculating the document frequencies
throughout this particular experiment. It can be seen
from Figure 1 that if more than twenty documents are
used for training, little is gained by increasing the num-
ber further. With 50 documents, there is no further
performance improvement.
These results show that Kea's performance is close to

optimum if about 50 training documents are used; in
other words, 50 labeled documents are su�cient to push
performance to the limit. However, Section 3 demon-

strates that this is not the case if domain-speci�c infor-
mation is exploited in the learning and extraction pro-
cess. In that case, much larger amounts of labeled train-
ing documents prove bene�cial.

Subject Area of Training Documents

Now we investigate the extent to which models formed
by Kea transfer from one subject domain to another.
To this end we use the collection of journal articles de-
scribed above, and two collections of web pages also used
by Turney [1999], Aliweb, and NASA, all of which have
keyphrases assigned. The basic procedure was to train
on one of the collections and test on another, produc-
ing nine combinations. For each collection we chose 55
training documents at random and used the rest for test-
ing, 20 for the journal articles, 35 for Aliweb, and 86 for
NASA. The training documents were used to compute
the document frequencies; thus the entire keyphrase as-
signment model was based on the training documents
alone. For the journal articles, as well as the randomly-
chosen test set, we ran experiments with the same train-
ing/testing division that Turney [1999] used, the test set
comprising 20 articles in the journal Psycoloquy.
Figure 2 shows the average number of correct

keyphrases returned when �ve keyphrases are retrieved,
for twelve cases. The �rst nine represent every combina-
tion of training and testing sets drawn from one of the
three collections, and the last represents the Psycolo-
quy test set with the same three training sets (except

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

N
um

be
r

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of training documents

15 phrases output

5 phrases output

Figure 1: Performance on CSTR corpus for di�erent
numbers of training �les (error bars show 99% con�dence
intervals)

that all but Psycoloquy articles were used for the Jour-
nal training set, so it has a di�erent composition from
the Journal training set used for the other three cases).
The bars give 95% con�dence intervals for the mean per-
formance over the test sets. The dark bars highlight the
cases where the test and training documents are drawn
from the same population.
Note �rst that none of the four cases shown in Figure 2

show any statistically signi�cant di�erence between the
results for the three training sets|the con�dence inter-
vals overlap substantially. However, in the �rst three
cases, slightly better results seem to be obtained when
test and training documents are drawn from the same
population (dark bars). The fourth case (which cor-
responds to Turney's [1999] experiment) is anomalous
in this regard, which suggests that the test set, in this
case Psycoloquy journals, di�ers in character from the
training set, in this case the other journals. Also, the
Psycoloquy test set produces considerably (though not
statistically signi�cantly) better results whatever set it
is trained on. This is because authors speci�ed more
keyphrases for these papers (an average of 8.4).
We conclude that although it makes little di�erence

whether the training and testing documents come from
di�erent subject areas (certainly, the di�erences we have
found are not statistically signi�cant, perhaps because
the test sets are too small), to be on the safe side we
recommend using documents from the same subject area
if that is possible.
This �nding leads to the idea of directly exploiting

the fact that di�erent keyphrases are used in di�erent
subject areas. We explore this, using Kea, next.

3 Exploiting Domain-Speci�c

Information

A simple modi�cation of Kea enables it to exploit
collection-speci�c knowledge about the likelihood of a
particular phrase being a keyphrase. All that is neces-
sary is to keep track of the number of times a candidate

0

0.5

1

1.5

2

2.5

Aliweb NASA PsycoloquyJournals

A
liw

eb

Jo
ur

na
ls

N
A

SA

A
liw

eb

Jo
ur

na
ls

N
A

SA

A
liw

eb

A
liw

eb

N
A

SA

Jo
ur

na
ls

*

Jo
ur

na
ls

N
A

SA

Training documents

Figure 2: E�ect of training documents being on subjects
di�erent from test documents

phrase occurs as a keyphrase in the training documents,
and use this information in the form of an additional,
third attribute during the learning and extraction pro-
cesses.

3.1 Extending the Model

For a given phrase P in documentD, the new attribute|
which we call keyphrase-frequency|is simply the num-
ber of times P occurs as an author-assigned keyphrase
in all training documents other than D. Because this
new attribute is integer-valued, we discretize it using the
procedure from Section 2.2. Making the naive Bayes as-
sumption of independence, with K being the discretized
value of the keyphrase-frequency attribute, the probabil-
ity of a phrase being a keyphrase becomes:

Pr[keyjK;T;D] =

Pr[Kjkey]� Pr[T jkey]� Pr[Djkey]� Pr[key]

Pr[K;T;D]
;

where Pr[Kjkey] is the probability that a keyphrase has
discretized keyphrase-frequency value K. Like the other
probabilities|discussed in Section 2.2|Pr[Kjkey] can
be estimated reliably by counting the number of times
the corresponding event occurs in the training data.
The new attribute only makes sense if the documents

for which keyphrases are to be extracted come from the
same domain as the training documents. Otherwise,
there is no reason to bias the extraction algorithm to-
wards choosing phrases that have occurred as author-
assigned keyphrases during training. In order to make
use of the information provided by the new attribute,
it is necessary to re-train the extraction algorithm if
keyphrases are to be extracted from documents on a dif-
ferent topic. Training time becomes a critical factor.
Kea can generate a model for a new set of training

documents far faster than GenEx because of the simple
learning methods it employs.6 Asymptotically, it spends
most of the time sorting the attribute values for dis-
cretization. Since sorting is O(n log(n)) in the number of
values, Kea is O(n log(n)) in the number of phrases con-
tained by the training documents. On the collection of
journal articles from Section 2.4, Kea needs 8 minutes for
training, whereas GenEx needs approximately 48 hours
[Turney, 1999]. Note that these times are measured on
di�erent computers. However, Kea is implemented in a
combination of Perl and Java, whereas GenEx is written
in C: we expect that the di�erence would be even more
pronounced if the systems were compared on a level foot-
ing.

3.2 Experimental Evaluation

We empirically veri�ed that exploiting domain-speci�c
information increases the number of correctly extracted
keyphrases by performing experiments with the CSTR
collection described above. In order to isolate the e�ect

6However, GenEx and Kea both extract keyphrases very
quickly once a model has been generated.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 "

co
rr

ec
t"

 k
ey

ph
ra

se
s

Number of phrases output

no keyphrase frequencies

size 100

size 1000

Figure 3: Performance on CSTR corpus for di�erent
numbers of phrases output. Results are given using no
keyphrase frequencies, and using keyphrase frequency
corpuses of 100 and 1000 documents. (Error bars are
95% con�dence intervals.)

of changing the number of documents for computing the
keyphrase-frequency attribute, we used a separate set of
documents|the keyphrase frequency corpus|for count-
ing the number of times a phrase occurs as a keyphrase.
The actual set of 130 training documents was held con-
stant. Also, the same set of 500 test documents was used
throughout this experiment.
Figure 3 shows how the number of correctly identi�ed

keyphrases varies with the amount of domain-speci�c in-
formation available. The worst performance is obtained
when this information is not used|in other words,
the keyphrase-frequency attribute is excluded from the
model. The performance improves as more documents
are included in the keyphrase frequency corpus. Re-
sults are shown for corpuses of size 100 and 1000. Error
bars are included for the case where no keyphrase fre-
quency corpus is used, and for a corpus of size 1000:
these give 95% con�dence intervals on the number of
keyphrases correctly extracted from a test document,
and show that it is indeed possible to get signi�cantly
better results by exploiting domain-speci�c information
about keyphrases. In contrast to the results from Sec-
tion 2.4, it pays to have more than 50 documents with
author-assigned keyphrases available|in fact, moving
from 100 to 1000 documents improves results remark-
ably.

4 Conclusions

We have evaluated a simple algorithm for keyphrase ex-
traction, called Kea, which is based on the naive Bayes
machine learning method, and shown that it performs
comparably to the state of the art, represented by Tur-
ney's GenEx algorithm. We then proceeded to show how
Kea's performance can be boosted by exploiting domain-
speci�c information about the likelihood of keyphrases.

Kea is particularly well suited for making use of this in-
formation because it can be trained very quickly in a new
domain. Experiments on a large collection of computer
science technical reports con�rm that the modi�cation
signi�cantly improves the quality of the keyphrases ex-
tracted.
Making use of knowledge about which keyphrases are

used frequently in a particular domain has the additional
advantage that the extracted keyphrases are more uni-
form. This property makes it easier to categorize doc-
uments using the keyphrases extracted, and should be
bene�cial if they are used for topic search or document
clustering.

5 Acknowledgments

Many thanks to Peter Turney for making his document
collections and drafts of his paper available to us, and to
John Cleary for independently suggesting the use of the
keyphrase-frequency attribute.

References

[Breiman, 1996] Leo Breiman. Bagging predictors. Ma-
chine Learning, 24(2):123{140, 1996.

[Domingos and Pazzani, 1997]
P. Domingos and M. Pazzani. On the optimality of
the simple bayesian classi�er under zero-one loss. Ma-
chine Learning, 29(2/3):103{130, 1997.

[Dumais et al., 1998] S. T. Dumais, J. Platt, D. Hecker-
man, and M. Sahami. Inductive learning algorithms
and representations for text categorization. In Pro-
ceedings of the 7th International Conference on Infor-
mation and Knowledge Management, 1998.

[Fayyad and Irani, 1993] Usama M. Fayyad and Keki B.
Irani. Multi-interval discretization of continuous-
valued attributes for classi�cation learning. In Pro-
ceedings of the 13th International Joint Conference on
Arti�cal Intelligence, pages 1022{1027. Morgan Kauf-
mann, 1993.

[Lovins, 1968] J.B. Lovins. Development of a stemming
algorithm. Mechanical translation and computational
linguistics, 11:22{31, 1968.

[Quinlan, 1992] J.R. Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, Los Altos, CA,
1992.

[Turney, 1999] P.D. Turney. Learning to extract
keyphrases from text. Technical Report ERB-1057,
National Research Council, Institute for Information
Technology, 1999.

